Representations of Degree Three for Semisimple Hopf Algebras
نویسنده
چکیده
Let H be a cosemisimple Hopf algebra over an algebraically closed field. It is shown that if H has a simple subcoalgebra of dimension 9 and has no simple subcoalgebras of even dimension, then H contains either a grouplike element of order 2 or 3, or a family of simple subcoalgebras whose dimensions are the squares of each positive odd integer. In particular, if H is odd dimensional, then its dimension is
منابع مشابه
Central Invariants and Higher Indicators for Semisimple Quasi-hopf Algebras
In this paper, we define the higher Frobenius-Schur (FS-)indicators for finite-dimensional modules of a semisimple quasi-Hopf algebra H via the categorical counterpart developed in a 2005 preprint. When H is an ordinary Hopf algebra, we show that our definition coincides with that introduced by Kashina, Sommerhäuser, and Zhu. We find a sequence of gauge invariant central elements of H such that...
متن کاملOn the Degrees of Irreducible Representations of Hopf Algebras
Let H denote a semisimple Hopf algebra over an algebraically closed field k of characteristic 0. We show that the degree of any irreducible representation of H whose character belongs to the center of H∗ must be a divisor of dimk H .
متن کاملTwisted Frobenius–schur Indicators for Hopf Algebras
The classical Frobenius–Schur indicators for finite groups are character sums defined for any representation and any integer m ≥ 2. In the familiar case m = 2, the Frobenius–Schur indicator partitions the irreducible representations over the complex numbers into real, complex, and quaternionic representations. In recent years, several generalizations of these invariants have been introduced. Bu...
متن کاملOn the Irreducible Representations of a Class of Pointed Hopf Algebras
We parameterize the finite-dimensional irreducible representations of a class of pointed Hopf algebras over an algebraically closed field of characteristic zero by dominant characters. The Hopf algebras we are considering arise in the work of N. Andruskiewitsch and the second author. Special cases are the multiparameter deformations of the enveloping algebras of semisimple Lie algebras where th...
متن کاملHopf Algebra Deformations of Binary Polyhedral Groups
We show that semisimple Hopf algebras having a self-dual faithful irreducible comodule of dimension 2 are always obtained as abelian extensions with quotient Z2. We prove that nontrivial Hopf algebras arising in this way can be regarded as deformations of binary polyhedral groups and describe its category of representations. We also prove a strengthening of a result of Nichols and Richmond on c...
متن کامل